Solutions to End Of Year Review Exercises

1. MgS Mg, a metal, has two valence electrons. Sulfur, a non metal has six. Each magnesium atom gives two electrons to a sulphur atom to create the neutral MgS.
2. The total current is $40 / 10=4 \mathrm{~A}$. But R_{1} only receives $(100-40) \mathrm{V} / 20$ $\Omega=3 \mathrm{~A}$.
So R_{2} receives $4 \mathrm{~A}-3 \mathrm{~A}=1 \mathrm{~A}$.
3. B That way each piece can obtain 12 V .
4. $\mathrm{V}=\mathrm{IR}$
$=2(5)=10 \mathrm{~V}$
VIt $=\mathrm{mc} \Delta \mathrm{T}$
10(2)(5 min) $(60 \mathrm{~s} / \mathrm{min})=\mathrm{m}(4.19)(26-20)$
$\mathrm{m}=238.7 \mathrm{~g}$
5. filter 2 (density $=1 \mathrm{~g} / \mathrm{ml}$) and pure water is a very poor conductor of electricity.
6. THEY INVERTED THE TABLE OF VALUES. If voltage was controlled, then V should be the x value.

Current(A)

Voltage (V)
b) $\quad \mathrm{G}=\Delta \mathrm{I} / \Delta \mathrm{V}=3.66 \mathrm{~S}$

I asked my computer to find the slope. You can ask the little computer that's in your pretty/handsome head to do likewise.
with(stats):
> fit[leastsquare[[x,y]]]([[.10, .20, .30, .40, .50, .60, .70, .80, .90, 1], [.37, .72, 1.08, 1.48, 1.80, 2.16, 2.59, 2.96, 3.33, 3.6]]);

$$
y=-.005333333333+3.662424242 x
$$

7. With time, the sugar particles get statically charged as they constantly make contact with the sifter. Since the sifter and sugar have opposite charges, they attract one another.
8. 8 (note you can use the formula: $2 n^{2}$ to get the maximum number of electrons per shell)
9. $12 \mathrm{~V} /(1+2+3) \Omega=2 \mathrm{~A}$
10. As pH increases we get more OH^{-}and less H^{+}. $\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]$always $=10^{-14}$.
11. a) 2 and 3
b) 2
12. 18
13. (1) Ne
(2) Mg
(3) Si
(4) K
14. It conducts electricity.

It conducts heat.
It will react with acid.
It is malleable.
Metals react with nonmetals.
15.

16. $2 \mathrm{Al}+3 \mathrm{CuCl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{Cu}$
17. $\mathrm{E}=\mathrm{Pt}$
$=1.5 \mathrm{~kW}(1 \mathrm{~h} /$ time $)(5$ time $/$ week $)(50$ weeks $)=375 \mathrm{kWh}$
C $=$ E* rate
$=375 \mathrm{kWh}(\$ 0.05 / \mathrm{kWh})=\$ 18.75$
18. $\mathrm{n}=\mathrm{VC}=0.500 \mathrm{~L}(0.50 \mathrm{~mole} / \mathrm{L})=0.25$ moles
0.25 moles $(58.5 \mathrm{~g} / \mathrm{mole})=14.75$ grams
19. Series in circuit 1: $\quad \mathrm{V}_{3}=\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{2}+\mathrm{V}_{1}$

$$
\mathrm{V}_{1}=6 \mathrm{~V}-2 \mathrm{~V}=4 \mathrm{~V}
$$

Parallel(circuit 2): $\quad \mathrm{V}_{2}=\mathrm{V}_{1}=\mathrm{V}_{3}=6.0 \mathrm{~V}$
20. $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$2.0(0.300)=0.50 \mathrm{~V} 2$
$\mathrm{V}_{2}=1.2 \mathrm{~L}$, so he must add $1.2-0.3=0.9 \mathrm{~L}$ of water.
21. $\mathrm{G}=\Delta \mathrm{I} / \Delta \mathrm{V}=(2-1.5) /(6-4.5)=0.33 \mathrm{~S}$
22. $\mathrm{C}_{2} \mathrm{H}_{6}+3.5 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

32 moles $\mathrm{CO}_{2}\left[\frac{3.5 \mathrm{O}_{2}}{2 \mathrm{CO}_{2}}\right]=56$ moles O_{2}

56 moles $\mathrm{O}_{2}(32 \mathrm{~g} / \mathrm{mole})=1792 \mathrm{~g}$ of O_{2}
23. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$

50 moles $\mathrm{Fe}\left[\frac{1 \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{Fe}}\right]=25$ moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
25 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}\left(2 * 56+3^{*} 16 \mathrm{~g}\right) /$ mole $=4000 \mathrm{~g}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
24. $1 / 50 \Omega+1 / 200 \Omega=1 / R$
$4 / 200+1 / 200=5 / 200=1 / R$
$R=200 / 5=40 \Omega$.
25. oops! We don't have the answer sheet!
26. R_{2} and R_{3}, which add up to 40Ω, experience a total of $100 \mathrm{~V}-60 \mathrm{~V}$ $=40 \mathrm{~V}$.
$\mathrm{I}=\mathrm{V} / \mathrm{R}=40 \mathrm{~V} / 40 \Omega=1 \mathrm{~A}$.
27. \#4
28.

	malleability	acid	conductivity
metal	bends easily	fizzes	Conducts
metalloid	brittle	No reaction	Semi- conductor
nonmetal	brittle, liquid or gas	No reaction	Poor conductor

Out of the three groups, only a metalloid is a semiconductor that will not react with acid. When we obtained that combination of results, we knew we had a metalloid. Otherwise it was either a metal or a nonmetal.

